3.3 FEAST Non-Hermitian
!!!! Standard AX=EX - Complex Symmetric, Real General and Complex General
zfeast_sFev{x}({List-A},fpm,epsout,loop,Emid,r,M0,E,X,M,res,info,{Zne,Wne})
dfeast_gFev{x}({List-A},fpm,epsout,loop,Emid,r,M0,E,X,M,res,info,{Zne,Wne})
zfeast_gFev{x}({List-A},fpm,epsout,loop,Emid,r,M0,E,X,M,res,info,{Zne,Wne})
!!!! Generalized AX=EBX - Complex Symmetric (B also sym.), Real General and Complex General
zfeast_sFgv{x}({List-A},{List-B},fpm,epsout,loop,Emid,r,M0,E,X,M,res,info,{Zne,Wne})
dfeast_gFgv{x}({List-A},{List-B},fpm,epsout,loop,Emid,r,M0,E,X,M,res,info,{Zne,Wne})
zfeast_gFgv{x}({List-A},{List-B},fpm,epsout,loop,Emid,r,M0,E,X,M,res,info,{Zne,Wne})
!!!! RCI (format independent) - Complex Symmetric and Real/Complex General
zfeast_srci{x}(ijob,N,Ze,work1,work2,Aq,Bq,fpm,epsout,loop,Emid,r,M0,E,X,M,res,info,{Zne,Wne})
zfeast_grci{x}(ijob,N,Ze,work1,work2,Aq,Bq,fpm,epsout,loop,Emid,r,M0,E,X,M,res,info,{Zne,Wne})
We note the following:
• The Table below details the series of arguments in each {List-A}, and {List-B} that are specific to
the type of matrix format represented above by F (as a placeholder).
F List-A List-B
Dense
Symmetric y {UPLO, N, A, LDA} {B, LDB}
General e {N, A, LDA} {B, LDB}
Banded
Symmetric b {UPLO, N, ka, A, LDA} {kb, B, LDB}
General b {N, kla, kua, A, LDA} {klb, kub, B, LDB}
Sparse
Symmetric csr {UPLO, N, A, IA, JA} {B, IB, JB}
General csr {N, A, IA, JA} {B, IB, JB}
• Similarly to the Hermitian case, Table 4 details the specific matrix-format arguments in {List-A}
and {List-B}. For the banded drivers and the real/complex general cases, kla (resp. klb) represents
the number of sub-diagonals for matrix A (resp. matrix B), and kua (resp. kub) the number of super-
diagonals for matrix A (resp. matrix B).
• Table 7 details the common arguments in all the non-Hermitian FEAST interfaces above.
• Table 6 details the arguments for the non-Hermitian RCI interfaces (in red above).
Type I/O Description
ijob integer in/out On entry: ijob=-1 (initialization)
On exit: ID of the FEAST_RCI operation
N integer in Size of the system
Ze double complex out Coordinate along the complex contour
work1 double complex(N,M0) in/out Workspace
or
double complex(N,2*M0)
(if left vector calculated for non-sym.
interfaces and fpm(15)=0)
work2 double complex(N,M0) in/out Workspace
Aq, Bq double complex(M0,M0) in/out Workspace for the reduced eigenvalue problem
Table 6: List of arguments for the FEAST RCI interfaces. Applicable to Non-Hermitian and Polynomial
Drivers.
21